Worksheet -13

Subject: - Mathematics

Class: - VIII

Teacher: - Ms. Neeru

_____ Class & Sec: ____ Name: __

____ Roll No. ____

__ Date: 26.08.2020

Problème

$$\frac{1}{\sqrt{625}} = \sqrt{625} - 25$$

$$\sqrt{121} \quad \sqrt{121} \quad 11$$

$$\frac{3}{900}$$
 = $\frac{3136}{900}$ = $\frac{56}{30}$ = $\frac{28}{30}$

$$= 40 \times 21 = 846$$

Teacher's Signature

Ex 6.3

Question 9:

Find the smallest square number that is divisible by each of the numbers 4, 9 and 10.

Answer 9:

L.C.M. of 4, 9 and 10 is 180.

Prime factors of $180 = 2 \times 2 \times 3 \times 3 \times 5$

Here, prime factor 5 has no pair. Therefore 180 must be multiplied by 5 to make it a perfect square.

:. 180 × 5 = 900

Hence, the smallest square number which is divisible by 4, 9 and 10 is 900.

2	180
2	90
3	45
3	15
5	5
	1

Question 10:

Find the smallest square number that is divisible by each of the numbers 8, 15 and 20.

Answer 10:

L.C.M. of 8, 15 and 20 is 120.

Prime factors of $120 = 2 \times 2 \times 2 \times 3 \times 5$

Here, prime factor 2, 3 and 5 has no pair. Therefore 120 must be multiplied by

2 x 3 x 5 to make it a perfect square.

 $120 \times 2 \times 3 \times 5 = 3600$

Hence, the smallest square number which is divisible by 8, 15 and 20 is 3600.

2	120	
2	60	
3	30	
3	15	
5	5	
	1	

9

189

Example 11: Find the greatest 4-digit number which is a perfect square.

Solution: Greatest number of 4-digits = 9999. We find $\sqrt{9999}$ by long division method. The remainder is 198. This shows 99^2 is less than 9999 by 198.

This means if we subtract the remainder from the number, we get a perfect square. Therefore, the required perfect square is 9999 - 198 = 9801.

And, $\sqrt{9801} = 99$

Example 12: Find the least number that must be added to 1300 so as to get a perfect square. Also find the square root of the perfect square.

Solution: We find $\sqrt{1300}$ by long division method. The remainder is 4.

This shows that $36^2 < 1300$.

Next perfect square number is $37^2 = 1369$.

Hence, the number to be added is $37^2 - 1300 = 1369 - 1300 = 69$.

	36
3	1300
6 <u>6</u>	400
	- 396
	4

99

81

9999

1899

- 1701

198